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degrees of freedom which render the theory well-defined at high energies. We introduce a

number of methods which reveal the partons inside the soliton, including deforming the
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1 Introduction

Solitons in field theory often have, in addition to their translational degrees of freedom, a

number of further collective coordinates that arise from the action of internal symmetries.

Two prime examples of this are:

• Solitons in the CPN−1 sigma-model:1 The single soliton has two translational modes,

a scaling mode and 2N − 3 orientational modes arising from the SU(N) global sym-

metry. This gives 2N collective coordinates in total.

• Yang Mills instantons: The instanton in SU(N) gauge theory has 4 translational

modes, a scaling mode and 4N − 5 orientational modes coming from large SU(N)

gauge transformations. This gives 4N collective coordinates in total.

In both of these cases, all collective coordinates are Goldstone modes arising from the

underlying symmetries of the theory. However, it has long been conjectured that, under

certain circumstances, there may be a different interpretation for these collective coordi-

nates as the positions of N constituent objects which make up the soliton [1]. (More recent

1These solitons carry a bewildering number of aliases. They are usually referred to as “sigma-model

lumps”, sometimes as “baby skyrmions” and, in the condensed matter literature, simply as “skyrmions”.

They are closely related to “semi-local vortices”. In the context of string theory they are called “worldsheet

instantons”.
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Figure 1. The quiver diagram for the UV gauge theory.

proposals along these lines include [2–4]). These constituents have been christened with

a variety of names over the years, from the mundane “fractional instanton” or “instanton

quark” to more flowery “zindon” or “quink”. Throughout this paper, we err on the side of

the mundane and refer to the instanton constituents simply as “partons”.

Conjectures about the partonic nature of instantons are usually framed in the context

of strongly coupled phenomena in d = 1 + 1 dimensions (for sigma-models) and d = 3 + 1

dimensions (for Yang-Mills theories). Such discussions typically hinge on the hope that

some class of field configurations dominates the path integral, even at strong coupling,

resulting in a vacuum which can be understood as a soup of correlated partons.

In this paper we will discuss the role of these partons in d = 2 + 1 dimensions (for

sigma-models) and d = 4+1 dimensions (for Yang-Mills theories). In these dimensions, the

instanton solutions are particle-like solitons. The theories are weakly coupled in the infra-

red, but non-renormalizable and require completion in the ultra-violet (UV). The premise

of this paper is that, in some situations, the partons provide the degrees of freedom that

form this UV completion.

The main purpose of this paper is to provide a detailed example where the partonic

nature of solitons is explicit, and under analytic control. The example that we offer is a

supersymmetric gauge theory in d = 2 + 1 dimensions which flows, in the infra-red, to a

variant of the CPN−1 sigma-model. The field content of the gauge theory is shown in the

quiver diagram: it consists of a U(1)N gauge group, together with N matter fields carrying

charge (+1,−1) under consecutive U(1) factors.

The sigma-model of interest arises as the Coulomb branch of this theory. This means

that after integrating out the matter multiplets, and dualizing the photons, the low-energy

dynamics of the gauge theory is captured by a suitable variant of the CPN−1 sigma-

model [7]. (To be precise, the Coulomb branch is the cotangent bundle T ⋆CPN−1).

Although we integrate out the charged matter to arrive at the sigma-model description,

we have not lost all trace of it. Its memory remains in the guise of the soliton. A single

soliton can be shown to be a multi-particle state, formed from the matter multiplets that

have been integrated out. Our goal in this paper is to answer the inverse question: “Given

access to the low-energy sigma-model, what can we learn about the UV gauge theory

through a study of the soliton?” Our surprising conclusion will be that the properties of

the soliton allow us to reconstruct the microscopic quantum numbers of the partons, details

which one would imagine had been swept away by the winds of the renormalization group.

– 2 –
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The main achievement of this paper is to introduce two new approaches which add

to the existing evidence for the partonic nature of sigma-model lumps, and clarify how

the partons are related to the UV completion of the sigma-model. These new approaches

are set out in section 2.3 for the CP1 sigma-model, and in section 3.2 for the CPN−1

sigma-model. The first and cleanest approach is to study the instantons in a deformation

of the sigma-model, in which a single soliton solution decomposes into N constituents,

allowing us to graphically demonstrate the existence of partons. The second approach is to

re-interpret the soliton equations as the equations of electrically charged point-like sources.

In this reformulation, the scale and orientation moduli of the soliton can be explicitly seen

to be the positions of N partons carrying the quantum numbers dictated by the microscopic

quiver theory. Moreover, this provides insight into the manner in which fundamental fields

morph into solitons. Finally, in order to provide some additional context for our work, we

describe the relationship between our partons and calorons which arise when the theory is

compactified on a circle.

All the work presented in this paper was undertaken with an eye to the harder problem

of partons in Yang-Mills instantons. In section 4, we review several facts that suggest a

partonic interpretation may be appropriate for Yang-Mills instantons in d = 4 + 1 dimen-

sions, and conclude that this issue merits further study. We hope to address it more fully

in a future publication.

2 Partons in the CP1 sigma model

In this section we discuss solitons in the CP1 sigma model. We describe several methods

which reveal the two partons sitting inside each soliton. All of these methods can be

generalized to the CPN−1 sigma model at the expense of more cumbersome notation

which is postponed until section 3.

We will consider a sigma model with target space T ⋆CP1, that is the cotangent bundle

of CP1. This has the same soliton spectrum as CP1 but admits an extension to a theory

with N = 4 supersymmetry. (This means eight supercharges in d = 2 + 1 dimensions).

The sigma model is non-renormalizable and requires a UV completion. Following [7], we

realise this UV completion by constructing the sigma model as the Coulomb branch of a

gauge theory. We start by reviewing this construction.

2.1 A UV completion of the sigma model

N = 4 theories in d = 2 + 1 dimensions have a global SU(2)R × SU(2)N R-symmetry. The

theories we consider in this paper are built from two standard multiplets:

• The vector multiplet contains a gauge field Aµ and three real scalar fields ~φ trans-

forming in the (1,3) representation of the R-symmetry group. There are also four

Majorana fermions transforming as (2, 2̄).

• The hypermultiplet contains a doublet of complex scalar fields Q = (q, q̃†), trans-

forming as (2,1) under the R-symmetry. The four Majorana fermions transform

as (1,2).

– 3 –
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Our theory consists of a single U(1) vector multiplet coupled to two hypermultiplets Q1 and

Q2 with charge +1 and −1 respectively. The bosonic part of the Lagrangian is given by,

− L =
1

4e2
FµνFµν +

1

2e2
(∂µφ)2 +

2
∑

i=1

(

|Dµqi|
2 + |Dµq̃i|

2
)

+(~m +~φ)2(|q1|
2 + |q̃1|)

2 + (~m −~φ)2(|q2|
2 + |q̃2|

2)

+
e2

2
(|q1|

2 − |q2|
2 − |q̃1|

2 + |q̃2|
2)2 + 2e2|q̃1q1 − q̃2q2|

2 . (2.1)

Here e2 is the gauge coupling constant,while ~m is a triplet of mass parameters. The vector

multiplet is massless while, for generic values of ~φ, the hypermultiplets are massive. The

theory has a single flavour symmetry, U(1)F , under which the hypermultiplets Q1 and Q2

both have charge +1.

We are interested in the low-energy effective action for the vector multiplet. This is

best described after first dualizing the photon in favour of a periodic scalar field, σ ∈ [0, 2π),

defined by

Fµν =
e2

2π
ǫµνρ∂

ρσ (2.2)

Written in the dual variables the theory has a further global symmetry, usually denoted as

U(1)J , which acts by shifting σ. In non-Abelian theories this symmetry is typically broken

by instanton effects, but in our Abelian theory it remains exact.

After integrating out the hypermultiplets at one-loop, the low-energy effective action

is given by a sigma model on the Coulomb branch [7],

−L =
1

2
H(φ) (∂µ

~φ)2 +
1

8π2
H(φ)−1(∂µσ + ~ω · ∂µ

~φ)2 (2.3)

Here the function H(φ) can be thought of as the renormalized gauge coupling, receiving

contributions from each of the two hypermultiplets

H =
1

e2
+

1

4π|~m +~φ|
+

1

4π|~m −~φ|
(2.4)

The factor of 4π in this expression is usually neglected, but arises from an explicit one-

loop computation as shown in [8]. This normalization will prove important later in our

discussion. The connection ~ω in (2.3) is defined by ~∇H = ~∇× ~ω.

The one-loop effective action (2.3) defines a sigma-model with a hyperKähler metric on

two-centered Taub-NUT space. This hyperKähler structure is required by supersymmetry

and is sufficient to ensure that there are no further corrections to the action: the one-loop

result is exact [7]. In particular, it holds even in the strong coupling limit e2 → ∞. Here

something special happens: the U(1)J isometry is enhanced to SU(2)J and the metric (2.3)

becomes the Eguchi-Hanson metric on T ⋆CP1 [9].

– 4 –
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The CP1 submanifold. We will be interested in the CP1 submanifold that is the zero

section of T ⋆CP1. It is also sometimes known as the “bolt”. To define it, we choose for

simplicity ~m = (0, 0,m). The bolt is then defined as the submanifold with ~φ = (0, 0, φ)

and φ ∈ [−m,m]. The metric on the bolt is given by

ds2 = H(φ) dφ2 +
1

4π2
H(φ)−1 dσ2

with

H(φ) =
1

e2
+

m

2π(m2 − φ2)
(2.5)

For finite e2, this is the metric on a squashed sphere written in “toric” coordinates. When

e2 → ∞, it becomes the metric on the round sphere with SU(2)J isometry. To see this

explicitly, we define the complex coordinate on the Riemann sphere,

R =

√

m − φ

m + φ
eiσ (2.6)

in terms of which the metric, in the e2 → ∞ limit, takes the familiar form,

ds2 =
2m

π

dR dR̄

(1 + |R|2)2
(2.7)

2.2 Solitons and their microscopic interpretation

The low-energy sigma model has solitons. These solitons are BPS only if we take the vac-

uum to lie on the CP1 bolt defined above. (In fact, if this is not the case, the soliton profile

does not have a well-defined asymptotic limit). In this section we study the properties of

the soliton and identify this object in the microscopic gauge theory.

Let us first determine the mass of the soliton. It is related to the size of the CP1 (and

this is the reason that the factor of 1/4π was important in (2.4)). It is a simple matter to

write down the lump equations in terms of the φ and σ fields. The energy functional for

static configurations can be written as:

E =

∫

d2x
1

2
H ∂αφ∂αφ +

1

8π2
H−1∂ασ∂ασ

=

∫

d2x
1

8π2
H−1(2πH ∂αφ ∓ ǫαβ∂βσ)2 ±

1

2π
ǫαβ∂αφ∂βσ. (2.8)

The Bogomolnyi equations can be found sitting within the total square: they are

2πH(φ) ∂αφ = ǫαβ ∂βσ (2.9)

where the function H(φ) is given in (2.5). When these equations are satisfied, the energy

is given by the last term in (2.8) which we recognize as the topological charge. It counts

the winding of the configuration, weighted by the area of the (squashed) sphere. Recalling

– 5 –
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that φ ∈ [−m,m] and σ ∈ [0, 2π), this area is given by 4πm. The mass of the BPS lump,

given by the lowest energy configuration with unit winding number, is

Mlump = 2m

So what is this object in the microscopic gauge theory? We’re looking for a BPS state

with mass 2m. There is only one candidate: the soliton corresponds to a two particle

state Q1Q2 constructed from the hypermultiplets. This state is neutral under the U(1)

gauge symmetry, but charged under the U(1)F flavour symmetry. The flavour charge has

morphed into the topological charge at low energies.

The soliton is BPS only for vacua that lie on the CP1 bolt. But this is also true of the

state Q1Q2: the requirement that it is BPS is that the two mass-vectors ~m±~φ are parallel.

This holds when ~φ and ~m lie parallel, with |~φ| ≤ |~m|. At low energies this descends to the

requirement that we lie on the bolt.

This is quite cute. We integrated out the hypermultiplets and might have expected

that we’d lost them for good. But, in fact, they re-appear in the low-energy effective

action as solitons. It is somewhat reminiscent of the manner in which baryons appear as

skyrmions in the chiral Lagrangian. The identification of the soliton with a multi-particle

state was first made in the context of mirror symmetry as particle/vortex duality [10] and

was elaborated upon further in [11, 12]. In the rest of this section, we will study the

implications of this identification in more detail.

The first question that we should answer is: why are the partons bound to form pairs

within the soliton? The reason is that, in three dimensions, the 1/r fall-off of the electric

field ensures that any state charged under a local current has logarithmically divergent

mass. There is a similar IR divergence from the massless φ field. This means that on

the Coulomb branch, where the gauge symmetry is unbroken, all finite mass states are

associated to gauge invariant operators. In our theory the only such BPS operator is the

dipole Q1Q2.

Although the infra-red divergence requires that the partons are bound together, there

is no static force between them. This is manifested in the solitonic description by the

existence of four collective coordinates. Two simply give the center of mass of the soliton,

Z. The remaining two correspond to a scale size ρ and an orientation collective coordinate

θ. In the limit e2 → ∞, where the target space becomes the round sphere, θ is a Goldstone

mode arising from the action of U(1)′J ⊂ SU(2)J on the soliton. This U(1)′J is defined

by the requirement that it leaves the vacuum invariant and, in general, does not coincide

with U(1)J . (We will explain an exception to this statement below). As we will describe

in detail, when e2 is finite and the target space sphere is squashed, θ is not in general

associated with a Goldstone mode.

2.3 How to tell if your soliton contains partons

The microscopic interpretation of the soliton is as a dipole of charged hypermultiplets. We

would like to ask what memory the soliton has of its microscopic origins. In other words,

suppose that we have access only to low-energy information captured within the sigma

– 6 –
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Figure 2. Energy density for a single BPS soliton in CP1 with m/e2 = 0, 1/2, 3/2.

model: what would we be able to say about the hypermultiplets that we have integrated

out? Here we offer a number of methods which reveal the partonic nature of the soliton.

Throughout this section we work in the vacuum 〈φ〉 = 0 where the two partons have equal

mass m. (We will relax this condition in section 2.4).

2.3.1 Deforming the sigma model

The simplest and most explicit method which reveals the partons is to look at the single

soliton solution in the deformed CP1 sigma-model. The deformation that we have in mind

occurs naturally in our UV theory: it is the squashed target space with H(φ) given by

(2.5) with finite e2.

When m/e2 = 0, and the target space inherits the round metric, a plot of the energy

density reveals no hint of the microscopic structure. It simply gives a blurred lump of size

ρ as shown in the first plot of figure 2. The remaining two plots in the figure show the

energy density of the BPS soliton as m/e2 increases and the target space is squashed into

the shape of a rugby ball.2 The topological charge becomes localized around the tips at

φ = ±m. In space, we see that the energy density becomes localized in two equal peaks,

each with E = m, sitting at positions z+ and z−, separated by a distance |z+ − z−| = 2ρ.

In the limit m/e2 → ∞, the parton configuration in the figure is reminiscent of the

“meron” configuration described in [13]. A single parton has topological charge 1/2, as

does a single meron. However, there are also differences. Our configuration is a solution

to the equations of motion on the squashed sphere; the meron configuration is a singular

solution to equations on the round sphere. This difference becomes most manifest when we

look to generalize the discussion to the CPN−1 sigma-model. The meron continues to have

topological change 1/2 in this context while, as we will see in the following section, deform-

ing the metric on CPN−1 causes the lump to decompose into N partons with topological

2Mathematica notebooks for all figures presented in this paper can be downloaded from

http://www.damtp.cam.ac.uk/user/tong/parton.html .
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charge 1/N . A similar mechanism for revealing the partonic structure of sigma-model

lumps was independently found in [14].3

2.3.2 Parton quantum numbers

We saw above that deforming the sigma model target space dramatically reveals the par-

tonic nature of the soliton. But suppose that we work in the e2 → ∞ limit where the

target space is round and the energy density is merely a smeared blob. Is it still possible

to disentangle the partonic structure? The answer, as we shall see, is yes.

The first hint at a partonic structure was described long ago in [1] and arises from

simply looking at the solution in different variables. In the e2 → ∞ limit, the profile of a

single soliton is given by

φ = mρ
e−iθ(z − Z) + eiθ(z̄ − Z̄)

|z − Z|2 + ρ2

The four collective coordinates of the solution are Z ∈ C, the centre of mass, ρ ∈ R+, the

scale size of the soliton, and θ ∈ [0, 2π), a Goldstone mode arising from the U(1)′J ⊂ SU(2)J
flavour symmetry which is left unbroken by the choice of vacuum.

However the fact that the collective coordinates can be re-interpreted as the positions

of partons is clear if we rewrite the soliton solution using the coordinate R on target space,

defined in (2.6). Then the single soliton solution takes the form,

R =
z − z+

z − z−
(2.10)

with Z = 1
2
(z− + z+) and ρeiθ = 1

2
(z− − z+). The collective coordinates z+ and z− reveal

the positions of the partons. Indeed, at z = z± we have φ = ±m, so at each of these

locations one of the hypermultiplets of our microscopic theory becomes massless. We will

shortly see that the soliton profile near these points reveals that the configuration carries

the correct electric charge.

There is a simple generalization of the single soliton solution (2.10) to a k

soliton solution,

R =

k
∏

n=1

z − zn
+

z − zn
−

(2.11)

where {zn
+} and {zn

−} denote the positions of the hypermultiplet excitations Q1 and Q2 re-

spectively. The fact that the k-lump solution is determined by the positions of two sets of k

points on the plane has long been taken as evidence for the partonic nature of the soliton [1].

This fact is explicitly realised in the three dimensional gauge theory construction.

3Note added: After the first version of this paper appeared on the arXiv, it was pointed out to us that

equation (4.26) of [15] also reveals the energy density of a sigma-model lump with multiple peaks. In this

case, the reason for the partonic behaviour appears to be rather different, resulting from the singular nature

of the target space which, in turn, gives rise to a singular energy density.

– 8 –
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Dual Bogomolnyi equations. The partons Q1 and Q2 in the microscopic model carry

electric charge ±1 under the U(1) gauge field. They also carry flavour charge +1 under

U(1)F . This flavor symmetry descends to the topological charge of the sigma model. But

it is also possible to reconstruct the electric charge of the partons from the lump solutions.

To do this, we rewrite the soliton equations (2.9) in terms of dual variables. We begin

by inverting the duality transformation (2.2), this time with the low-energy gauge field Fµν

defined in terms of the renormalized gauge coupling,

Fµν =
H−1

2π
ǫµνρ∂

ρσ (2.12)

In these variables, the Bogomolnyi equation (2.9) simply relates the electric field to the

variation of φ,

∂αφ = F0α (2.13)

Although these equations are merely a re-writing of the Bogomolnyi equations, they do

not have smooth solutions corresponding to solitons. Instead, in order to reproduce the

soliton profiles, we must introduce point-like sources. This is to be expected in an electrical

formulation of the theory.

The transformation (2.12) ensures that the electric field is divergence free except at

points where σ is ill-defined. It is simple to see where these points lie from the expressions

(2.6) and (2.11): they are at z = zn
+ and z = zn

−. Since σ has non-trivial winding around

each of these points, they act as sources for the electric field. In particular, we note from

(2.11) that σ increases by 2π if we complete an anticlockwise circuit around zn
+, and σ

decreases by 2π if we complete an anticlockwise circuit around zn
−. Hence for an arbitrary

closed loop C which avoids the points zn
± and encloses a region S, we have

∫

C

dxα ∂ασ = 2π

∫

S

dS
∑

n

[

δ(z − zn
+) − δ(z − zn

−)
]

(2.14)

We can rewrite the left-hand-side of this equation using Stokes’ theorem and the duality

(2.12). Since the resulting equation holds for arbitrary regions S, we can equate the

integrands to find,

∂α(HF0α) =
∑

n

[

δ(z − zn
+) − δ(z − zn

−)
]

. (2.15)

This is a rather novel method of viewing soliton collective coordinates as sources. For each

value of {zn
+} and {zn

−}, there is a unique solution to (2.13) and (2.15). This determines

a point on the soliton moduli space. Typically, the electrically charged particles in a

theory arise as fundamental excitations, while magnetically charged objects are associated

to solitons. This simple model in three dimensions provides an example where we can swap

between these two descriptions with ease.

– 9 –
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Figure 3. The dipole interaction between a lump and anti-lump.

2.3.3 The force between solitons

The dual Bogomolnyi equations above reveal that the partons carry electric charge, and we

already mentioned that this is responsible for the logarithmic confinement of the partons

with the soliton. Although there is no static force between the partons, the logarithmic

infra-red divergence suffered by any individual parton reappears once we ask them to move.

It is well known that the moduli space metric for sigma-model lumps has logarithmic infra-

red divergences [16]. For CP1 lumps, there is just a single divergent mode that arises from

the long-range tail of R,

Ṙ ∼
∑

n

żn
+ − żn

−

z
+ . . .

The kinetic terms are finite only if the sum
∑

n(zn
+ − zn

−) is constant. This is precisely

the condition that the sum of the dipole moments is unchanged, as expected from the

microscopic theory.

While solitons have only velocity-dependent forces, there is an attractive force between

a lump and an anti-lump. This calculation was performed many years ago and provides

yet another method to illuminate the partonic structure of the soliton [13]. One starts by

constructing a configuration describing a well-separated lump and anti-lump. The lump

has size ρ and orientation θ and is placed at the origin. The anti-lump has size ρ̄ and

orientation θ̄ and centre of mass position z = reiχ, where r ≫ ρ, ρ̄. The interaction energy

between the two objects is then computed to be [13]

Vint = −4m
ρρ̄

r2
cos
(

θ + θ̄ − 2χ
)

This is precisely the interaction energy of two dipoles on the plane, with orientation ρeiθ

and ρ̄eiθ̄, separated by reiχ. Indeed, it can be put in slightly more familiar form if we

define ~ρ1 = ρ(cos θ, sin θ), ~ρ2 = ρ̄(cos θ̄, sin θ̄) and ~r = r(cos χ, sin χ). Then the interaction

potential can be written as the dipole interaction,

Vint = −
4m

r2

(

2(~ρ1 · ~̂r)(~ρ2 · ~̂r) − ~ρ1 · ~ρ2

)

It is remarkable that this inter-soliton force captures the partonic structure in such a

clean fashion.

Finally, it’s worth mentioning another famous calculation which, while not directly

relevant to the present discussion, also reveals the partonic nature of instantons in the
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CP1 sigma-model. This is the computation of the determinants around the background

of multiple lumps for the theory in d = 1 + 1 dimensions [17, 18]. This computation

reveals a dipole-like structure for these objects even when viewed as instantons localized

in Euclidean spacetime.

2.4 Relationship to calorons

There is another context in which it is known that the sigma-model lump decomposes into

partons, known as calorons. To achieve this, one compactifies the theory on a spatial circle

of radius L. After deforming the theory in a suitable manner (to be described below), the

lump in the CPN−1 sigma-model can be shown to decompose into N domain walls [19].

(This phenomenon was further discussed in [20] and recently rediscovered in [21–23]). In

this section, we will describe the phenomenon of calorons in our sigma model and examine

how they are related to the partons we have already discussed. Our purpose is partly just

to put our work on partons in context. However, we are also interested in calorons because

a similar phenomenon occurs for Yang-Mills instantons compactified on a circle [24, 25],

and we are ultimately interested in whether our work on partons can likewise be extended

to the Yang-Mills case, as discussed in section 4. For this reason, we spend some time in

this section describing this phenomenon in our sigma model and examining the relationship

between the calorons and the partons.

Changing the vacuum. Until now, we studied the solitons around the vacuum 〈φ〉 = 0.

From the perspective of the UV gauge theory, this ensures that the partons have equal

bare mass, m. In order to understand the relationship to calorons, we will first look at the

behaviour of the solitons as we change the vacuum.

As we vary the vacuum, the microscopic masses of the partons change: they become

m ± 〈φ〉. The energy density for a single CP1 soliton is shown in figure 4 as we vary

the vacuum. It is clear that the energy in each spike changes, although the difference in

the heights of the spike is not linear in 〈φ〉 as one might naively expect from the classical

theory. It appears that much of the energy density is dispersed in the field between the

solitons. It may be interesting to explore this further, although we shall not do so here.

There is one key feature that will be important in what follows. As 〈φ〉 → ±m, only

a single energy spike survives. In this limit, one of the hypermultiplets in the microscopic

theory becomes massless. It is notable that the low-energy dynamics doesn’t notice this

fact. Typically, low-energy effective theories become singular when further fields become

massless. The reason that this doesn’t happen in three dimensions is due to the infinite

energy contained in the long range electric field that accompanies any charged state. This

ensures that even though the mass in the Lagrangian vanishes, there are no extra massless

charged excitations.

In the context of the soliton, we learn that the partonic description is really not an

accurate reflection of the physics when 〈φ〉 = ±m. Instead, varying the scale size ρ, and

the orientation θ of the lump in the deformed sigma-model does exactly what it says on

the tin: it changes the scale size and orientation. Microscopically the scale size arises from

exciting a cloud associated to the massless fields. Moreover, in this limit the orientation
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Figure 4. A single CP1 soliton with m/e2 = 1 as the vacuum varies from 〈φ〉 = 0 to 〈φ〉 = 0.1m

to 〈φ〉 = 0.2m.

mode θ is a Goldstone boson. This is because the symmetry U(1)′J that preserves the

vacuum coincides with U(1)J and acts on the soliton even when m/e2 6= 0.

Introducing a potential. Before we move on to describe the calorons in this model, it

is useful to first recollect what happens when we introduce a potential in the low-energy

dynamics. This can be induced in the microscopic theory by a Fayet-Iliopoulos parameter,

ζ > 0, after which the potential terms in (2.1) become

V = (~m +~φ)2(|q1|
2 + |q̃1|)

2 + (~m −~φ)2(|q2|
2 + |q̃2|

2)

+
e2

2
(|q1|

2 − |q2|
2 − |q̃1|

2 + |q̃2|
2 − ζ)2 + 2e2|q̃1q1 − q̃2q2|

2 . (2.16)

This theory no longer has a moduli space of vacua, but rather two isolated vacua given by
~φ = −~m, |q1|

2 = ζ and ~φ = +~m, |q̃2|
2 = ζ. Upon integrating out the hypermultiplets, this

is reflected in our low-energy description on the Coulomb branch (which is now strictly

valid only for m ≫ ζ) by the presence of the potential,

V =
1

2
ζ2H(φ)−1 (2.17)

The minima of this potential lie at φ = ±m. As described above, before we turned on this

potential, the partonic interpretation of the soliton was already rather different in these

vacua. After turning on the potential, the effect on the soliton is even more dramatic: it

shrinks to the singular solution with vanishing scale size ρ = 0. This behaviour can be

understood from the microscopic theory. As can be seen from (2.16), the presence of the

FI parameter causes the massless hypermultiplet to condense in the vacuum. This screens

the massless cloud which provided the non-zero size ρ of the soliton.

Calorons. We are now in a position to describe the emergence of calorons. We first

compactify the spatial direction x2 on a circle of radius L. The reduced Lorentz symmetry

allows for the addition of one further interaction: a theta term (θ/4π2L)F01. The theta
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Figure 5. A cartoon of calorons. As the lump grows, it splits into two domain walls.

angle sits in a supermultiplet with the FI parameter ζ and, as we now explain, induces a

potential similar to (2.17). Dualizing the photon in the presence of the theta term means

that (2.2) becomes (2π/e2)Fµν = ǫµνρ∂
ρσ − (θ/2π)ǫµν2 and the kinetic terms for the dual

photon are given by

e2

8π2

(

∂0σ
2 − ∂1σ

2 − (∂2σ − θ/2πL)2
)

Upon integrating out the hypermultiplets, e2 is again renormalized by H−1(φ) given in

(2.4). The θ term in the action is then seen to generate a potential term. The effect of the

θ term can be mitigated if σ winds n ∈ Z times around the compact circle, so the potential

is given by

V =

(

θ

2π
− n

)2 H−1(φ)

8π2L2

The minima are again at φ = ±m. The physics here is similar to that of the FI parameter.

The θ angle induces a background electric field in two dimensions [26]. This can be screened

by a condensation of charged scalars which can only occur at φ = ±m where these scalars

are massless.

The isolated vacua in our theory guarantee the presence of domain walls. These are

BPS and satisfy the Bogomolnyi equation

2πH(φ) ∂1φ = ∂2σ − θ (2.18)

Typically, supersymmetric theories with two vacua have a domain wall which is BPS and

interpolates from, say, the first vacuum to the second. If we wish to go back the other

way, from the second vacuum to the first, the domain wall is anti-BPS. However, in the

present situation both of these walls can be BPS [19, 21]. This is achieved by allowing σ

to vary along the circle, so that the right-hand side of (2.18) is > 0 for the first wall, but

< 0 for the second. The reason that these two walls don’t annihilate each other is because

the whole configuration carries the topological charge of the lump.

These two domain walls form the calorons of the CP1 sigma model [19, 21]. In the

presence of the θ term, the lump solution decomposes into two domain wall strings as

shown in the figure. This process is entirely analogous to the caloron-monopoles appearing

in Yang-Mills theories [24, 25]. For the CPN−1 sigma-model, the lump decomposes into

N calorons.
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Figure 6. The UV quiver.

The above discussion reveals how calorons are related to the hypermultiplet partons of

the microscopic theory. Clearly they are not the same objects: the calorons are strings on

R2 × S1, while the hypermultiplets are point-like excitations. Instead, the partons share

a greater kinship with the individual vacua rather than the domain walls since, in each

vacuum, a different hypermultiplet has condensed. In some contexts, sigma-model lumps

are probably best understood as collections of calorons. However, in our example, where

we wish to make contact with the hypermultiplets of the microscopic theory, the calorons

are not the relevant objects to use.

3 Partons in the CPN−1 sigma model

In this section we describe the N partons which lie inside the soliton in the CPN−1 sigma

model. We will find that once again we can recover much of the lost information about the

UV degrees of freedom through a careful study of the soliton. We start by describing the

UV completion of the sigma model.

3.1 A quiver gauge theory

We will construct the CPN−1 sigma model as the Coulomb branch of the quiver gauge

theory shown in the figure. This gauge theory has U(1)N gauge group with N hypermulti-

plets, Qi, i = 1, . . . , N . The ith hypermultiplet has charge (+1,−1) under U(1)i ×U(1)i+1,

where we identify U(1)N+1 ≡ U(1)1. For simplicity, we choose to assign each gauge group

the same coupling constant e2. The overall diagonal U(1) ∈ U(1)N is free. Once this is

removed, the N = 2 theory coincides with that described in section 2.

The theory has a single global symmetry U(1)F , under which each hypermultiplet

has charge +1. By weakly gauging this symmetry, we can introduce a triplet of mass

parameters, ~m, for the hypermultiplets. These also get masses from their coupling to

vector multiplets, so the final mass for the ith multiplet is given by | ~Mi|, where

~Mi = ~m +~φi −~φi−1 (3.1)

The vector multiplet fields are massless and the low-energy effective action is given by a

sigma model on the Coulomb branch, parameterized by the expectation values of ~φi and

σi, the latter being the dual photons defined in (2.2). Classically, the Coulomb branch is
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(R3 × S1)N . The classical metric on the Coulomb branch is inherited from the canonical

kinetic terms of the vector multiplet fields. After integrating out the hypermultiplets, the

metric receives a correction at one-loop [7] and is given by

ds2 = Hij d~φi · d~φj +
1

4π
H−1

ij (dσi + ~ωik · d~φk) (dσj + ~ωjl · d~φl) (3.2)

This is a multi-dimensional version of the Taub-NUT metric. The matrix Hij

has components

Hii =
1

e2
+

1

4π| ~Mi|
+

1

4π| ~Mi+1|
(3.3)

Hij = −
1

4π| ~Mi|
δj,i−1 −

1

4π| ~Mi+1|
δj,i+1 i 6= j

The connection ~ωij obeys ~∇iHij = ~∇i×~ωij. As in section 2, non-renormalization theorems

ensure that this one-loop result is the exact description of the low-energy dynamics. Up to

discrete identifications, the metric (3.2) has the product form,

R3 × S1 ×M

reflecting the fact that the overall, diagonal vector multiplet is decoupled. The metric on

M is hyperKähler, and closely related to the Lee-Weinberg-Yi metric for monopoles in

higher rank gauge groups [27].

The metric on M has a U(1)N−1
J isometry, arising from shifts in the dual photons σi.

In the strong coupling limit e2 → ∞, the isometry group is enhanced to SU(N). The metric

on M becomes the hyperKähler metric on T ⋆CPN−1, the cotangent bundle of CPN−1.

Finding the CPN−1 submanifold. Our interest is in the solitons supported by the

sigma model on M. These are BPS objects only if the vacuum state lies on the zero

section of T ⋆CPN−1, which we will again refer to as the “bolt”. We now describe the bolt

in more detail.

We take the bare mass parameter in the metric to lie along ~m = (m, 0, 0) with m > 0.

The bolt sits within the submanifold in which ~φi = (φi, 0, 0). The masses (3.1) then take

the form ~Mi = (Mi, 0, 0) with

Mi = m + φi − φi−1

The requirement that we lie on the bolt is simply Mi > 0.

Our next goal is to remove the overall free motion, parameterized by
∑

i φi and
∑

i σi,

leaving only the 2(N − 1) interacting fields. To this end, we define

φ̂J = φJ − φN −

(

N

2
− J

)

m J = 1, . . . , N − 1 (3.4)

There is a similar transformation for the σi variables. It is best described by first intro-

ducing the relative field strengths,

F̂ J
µν = F J

µν − FN
µν J = 1, . . . , N − 1 (3.5)
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Figure 7. The toric diagram for CP2.

The σ̂I fields are then defined as the dual variables

2πĤIJ F̂ I
µν = ǫµνρ∂ρσ̂I (3.6)

In the variables φ̂I and σ̂I , the metric on the bolt can be written as

ds2 = ĤIJ dφ̂Idφ̂J +
1

4π
Ĥ−1

IJ dσ̂Idσ̂J (3.7)

with I, J = 1, . . . N − 1 and the components of ĤIJ given by

ĤII =
N − 1

e2N
+

1

4πMI
+

1

4πMI+1

ĤIJ = −
1

e2N
−

1

4πMI+1

δJ,I+1 −
1

4πMI

δJ,I−1 (3.8)

where this notation means that each non-diagonal element of the matrix Ĥ contains the

constant piece 1/e2N . The masses, MI , now read

M1 = φ̂1 +
Nm

2

MJ = φ̂J − φ̂J−1 J = 2, . . . , N − 1

MN =
Nm

2
− φ̂N−1

and the requirement that MI > 0 becomes,

−
Nm

2
≤ φ̂1 ≤ φ̂2 ≤ . . . ≤ φ̂N−1 ≤

Nm

2

In the limit e2 → ∞, equations (3.7) and (3.8) simply give the Fubini-Study metric on

CPN−1 with SU(N) isometry, written in toric coordinates. In contrast, for finite e2, these

equations define a squashed metric on CPN−1 with only U(1)N−1 isometry.

The example of CP2. The toric diagram for CP2 is shown in the figure. The triangle

is the region Mi ≥ 0 for i = 1, 2, 3, plotted in the φ̂1 and φ̂2 plane. On each side of the

triangle, one of the Mi is zero, ensuring that one of the hypermultiplets becomes massless.

The left-hand edge corresponds to M1 = 0, the upper edge to M3 = 0, and the diagonal to

M2 = 0.
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In the interior of the triangle, the two dual photons σ̂1 and σ̂2 form a torus T2, as

shown in the figure. On each of the edges, one of the cycles of the torus degenerates as

dictated by the metric (3.7): on the left-hand edge σ̂1 degenerates, on the upper edge it is

σ̂2, and a linear combination of these on the diagonal.

Homogeneous coordinates. Before we move on to describe the solitons, it will also

prove useful to describe the relationship between our toric coordinates and the more familiar

homogeneous coordinates. Each point in CPN−1 corresponds to an equivalence class [fi] of

complex N -vectors fi ∈ C for i = 1, . . . N . Two vectors fi and f̃i are equivalent if fi = wf̃i

for some complex w 6= 0. The relationship to toric coordinates is given by

φ̂I = Nm

(

∑I
i=1 |fi|

2

∑N
j=1 |fj|2

−
1

2

)

and eiσ̂I =
fI

|fI |

|fI+1|

fI+1

(3.9)

To compare with our notation for CP1, the complex coordinate on the Riemann sphere is

given by R = f1/f2.

3.2 Partons and solitons

The sigma-model on the Coulomb branch once again enjoys the presence of a soliton. The

Bogomolnyi equations are now given by,

2πĤIJ∂αφ̂J = ǫαβ∂βσ̂I (3.10)

and a soliton with winding number k = 1 has mass

Mlump = Nm

A single soliton has 2N collective coordinates, decomposing as two center of mass coordi-

nates, a scale size and 2N − 3 orientation modes. These latter govern a choice of a based

CP1 submanifold inside CPN−1.

Looking to our gauge theory, there is again a unique BPS candidate for this lump: it

is the gauge invariant operator Q1Q2 . . . QN constructed from a string of hypermultiplets.

This object is constructed from the N links of the quiver diagram. It carries flavor charge

+N , and has mass equal to that of the soliton. Moreover, it is BPS on the same locus as

the soliton. We now show how to reconstruct this information, together with the quantum

numbers of the parton, from a study of the solitons themselves.

Deforming the CPN−1 sigma model. Just as we saw for CP1 lumps, deforming the

target space again causes the soliton to decompose into its partonic constituents. In the case

of CPN−1, the target space is squashed through the addition of the gauge coupling constant

e2 as in (3.8). The index theorem guarantees that the number of collective coordinate of

a single soliton remains 2N after this deformation. However, these collective coordinates

are no longer associated to Goldstone modes. Instead, they now dictate the positions of

N partons.

To illustrate this, in figure 8, we plot the energy density (or equivalently, the topological

charge density) for a BPS soliton (i.e. solving (3.10)), of winding number one, with the
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Figure 8. Energy density for a single CP2 soliton with m/e2 = 0, 1, 3.

target space given by a squashed CP2. To construct these plots, we first need to choose a

vacuum: we have picked φi = 0 which ensures that all partons have equal mass. The first

part of the figure shows the lump solution for a round target space, with m/e2 = 0. The

soliton is a smooth lump of size ρ with no evidence of partonic structure. Subsequent plots

show the soliton solution for the deformed target space. As m/e2 increases, the topological

charge becomes concentrated around the three points where each Mi vanishes, revealing

the partonic nature of the object.

In figure 9, we plot the profile of a single k = 1 soliton in the deformed target space

with m/e2 ≈ 3. The overall scale size, ρ, of the soliton is kept fixed, while the orientation

modes are changed. The figure shows clearly that these orientation modes govern the

relative positions of the partons.

Note that our partons in the CPN−1 sigma model are not merons for N ≥ 3.

The merons are always associated to topological charge +1/2, while our partons carry

charge 1/N .

Collective coordinates and parton positions. While looking at the deformed sigma-

model provides the most direct way to see the partonic nature of the soliton, is again

possible to see evidence of the partons even when e2 → ∞. First, let us look at the explicit

solutions in this limit.

The soliton with winding k has 2Nk collective coordinates. For well separated solitons,

these decompose into a position, a scale size and 2N − 3 orientation modes for each lump.

However, it is well known that the most general soliton solution is given by specifying k

sets of N points, {z1
n} . . . {zN

n } with n = 1, . . . , k. In the variables fi, the soliton solution

is given by

fi =

k
∏

n=1

(z − zi
n) (3.11)

This solution includes an implicit choice of vacuum at infinity. Examining (3.9) and

(3.4), we see that this choice is the symmetric vacuum φi = 0, in which each parton has
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Figure 9. Energy density for a single CP2 soliton with fixed “scale size” and varying “orientation”.

Figure 10. Toric diagrams for CP2 solitons with different parton positions.

mass Mi = m. In terms of φ̂, this vacuum looks a little less natural: it is φ̂J = m(J−N/2).

This is the same vacuum that we picked when plotting figures 8 and 9.

It is natural to conjecture that the points {zi
n} correspond to the positions of the kN

underlying partons. To see that this is indeed the case, we translate the soliton solution

into toric variables. Tracing through the various definitions, we see that the point in space

fi = 0 corresponds to a point where the mass of the ith hypermultiplet vanishes: Mi = 0.

This is identified as the location of the parton.

It is useful to illustrate these points with the example of CP2. The vacuum φ̂1 =

−φ̂2 = −m/2 sits firmly in the middle of the toric triangle. The images of different lump

solutions, corresponding to different CP1 submanifolds, are shown in figure 10. In each

case, the lump image touches each side of the toric diagram at one point: these points are

the images of the parton positions. The boundary of the lump image is the image of the

unique circle passing through the three parton positions; the interior and exterior of this

circle each map bijectively to the interior of the lump image. The centre of the circle and

the point at infinity both map to the vacuum. In the case where the three parton positions

lie on a straight line, the boundary of the lump image is the image of this line, and includes

– 19 –



J
H
E
P
0
8
(
2
0
0
9
)
0
0
6

the vacuum. Then the two half-planes on either side of the line each map to the interior

of the lump image. We can also ask what happens as two partons approach each other. In

this limit, the CP1 submanifold touches one corner of the toric diagram, as shown in the

third part of the figure.

Parton quantum numbers. The parton Qi in the microscopic model carries charges

(+1,−1) under U(1)i × U(1)i+1, for each i = 1, . . . , N , with U(1)N+1 ≡ U(1)1. We will

now show that it is possible to reconstruct this pattern of electric charges of the partons

from the lump solutions.

We again proceed by rewriting the soliton equations in terms of dual variables by using

the duality transformation (3.6). In these variables, the soliton equation (3.10) relates each

electric field to the variation of the corresponding φ̂I :

F̂ I
0α = ∂αφ̂I . (3.12)

The electric field F̂ I
0α is then divergence free except at points where one of the σ̂J is ill-

defined. From (3.9) and (3.11), we note that these points are at z = zi
n. Each σ̂J has

non-trivial winding around two of these points. In particular, σ̂J increases by 2π if we

complete an anticlockwise circuit around zJ
n , and σ̂J decreases by 2π if we complete an

anticlockwise circuit around zJ+1
n . Following the same arguments as in section 2.3, we

deduce that

∂α(ĤIJ F̂ J
0α) =

k
∑

n=1

[

δ(z − zI
n) − δ(z − zI+1

n )
]

. (3.13)

Just as in the CP1 case, for given {zi
n} these equations have a unique solution which

specifies a point on the soliton moduli space.

Equation (3.13) shows that each of the N partons sources two neighbouring gauge

fields, with the exception of the first and last partons, living at positions z1
n and zN

n . These

appear to be charged under just a single gauge field. To reconstruct the full quiver diagram

shown in figure 1, it is simplest to now put back the neutral, decoupled gauge field and

work with F i
µν with i = 1, . . . , N . The relationship between these N gauge fields and the

(N − 1) fields F̂ I
µν is given in (3.5). In terms of the more symmetric field strengths F i

µν ,

the source equation (3.13) reads

∂α(HijF
j
0α) =

k
∑

n=1

[

δ(z − zi
n) − δ(z − zi+1

n )
]

.

where zN+1
n ≡ z1

n. This equation is important. It shows that the structure of the soliton

captures the quantum numbers of the partons in the UV theory. The soliton is composed

of N partons, with the ith parton carrying charge (+1,−1) under U(1)i × U(1)i+1.

The force between solitons. In the case of solitons in the CP1 sigma model, we saw

that the parton quantum numbers could also be determined by the force between a soliton

and anti-soliton, which coincides with that between two dipoles. We now ask whether this
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property extends to the solitons of CPN−1. Can we interpret the soliton anti-soliton force

as the sum of dipoles with charges dictated by the quiver? The answer appears to be no.

The computation of the force between a soliton and anti-soliton in the CPN−1 sigma

model was performed many years ago in [28]. We’ll denote the collective coordinates of

the instanton by {zi} as in (3.11), while those of the anti-instanton are {yi}. If the two

objects are separated by distance r, the interaction potential is given by

Vint = −
4m

r2





N
∑

i=1

ziyi −
1

N

(

N
∑

i=1

zi

)





N
∑

j=1

yi







+ h.c.

This does not capture the key features of the quiver diagram. In particular, this force

treats all partons on the same footing. The ith parton, at position zi, interacts with all the

anti-partons rather than just the ith and (i+1)th as naively suggested by the classical quiver

diagram. It appears that the filter of renormalization group flow is simply too strong and

this low-energy force computation too myopic to determine the partonic quantum numbers.

Thankfully the dual Bogomolnyi equation described above does the job for us.

4 What does this tell us about Yang-Mills instantons?

In d = 4+1 spacetime dimensions, Yang-Mills theories are non-renormalizable. Arguments

involving supersymmetry and string theory show that these theories have a well-defined

ultra-violet completion when equipped with 8 or 16 supercharges [29]. Yet little is known

about the properties of the UV degrees of freedom.

The story is especially interesting for the theory with 16 supercharges which has a UV

fixed point governed by the (2, 0) superconformal theory in d = 5 + 1 dimensions. The

(2, 0) theory arises as the low-energy limit of N M5-branes and, famously, has a number

of degrees of freedom that scales as N3 [30]. Understanding the kind of mathematical

structure that gives rise to this N3 scaling remains an important challenge.

When compactified on a circle of radius R, only ∼ N2 degrees of freedom remain

massless and, at long distances, the (2, 0) theory reduces to 5d, maximally supersymmetric

U(N) Yang-Mills with gauge coupling g2 = 8π2R. Instantons in this theory, obeying

F = ⋆F , are BPS particles and are identified with the Kaluza-Klein (KK) modes coming

from six dimensions [31],

Minst =
8π2

g2
=

1

R
= MKK

These instantons come with a puzzle. Upon quantization, the scaling mode ρ ∈ R+

of the instanton gives rise to a continuous spectrum above Minst. This is odd behaviour

for a one-particle state in a quantum field theory. We propose that this continuous spec-

trum arises because the instanton should be interpreted as an N particle state. Moreover,

motivated by the similarity with the sigma-model described in the previous sections, we

conjecture that the N partons inside the instanton are related to the UV degrees of freedom

which complete the Yang-Mills theory at high energies.
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Let us start by providing circumstantial evidence for this proposal. First we can

ask where the crossover from ∼ N2 to ∼ N3 degrees of freedom occurs. This was stud-

ied in [32] using supergravity techniques where it was shown that the transition happens

at temperature

T ∼
8π2

g2N

Indeed, this had to be the case: the theory is strongly coupled at energies E ∼ 1/g2N and

this is where the new degrees of freedom must kick in. This mass scale points firmly at the

existence of instantonic partons.

The existence of modes carrying fractional KK momentum is familiar in compactified

Yang-Mills theories, where they arise in the presence of a Wilson line. Such modes occur

whenever N branes wrapped on the circle combine to form a single “long” brane wrapped

N times. Behaviour of this type was important in the original work on black hole entropy

counting [33, 34].

It is also worth mentioning some further numerological evidence for the partonic in-

terpretation of instantons. The N3 scaling for M5-branes can be refined by an anomaly

computation [35] whose coefficient provides the subleading term in the number of degrees

of freedom on N M5-branes: c(su(N)) = N3−N . A generalization of this formula to other

G = ADE theories was conjectured by Intriligator to be [36],

c(G) = C2(G) |G|

where C2(G) is the dual Coxeter number (normalized such that C2(su(N)) = N) and |G| is

the dimension of the group. This fits nicely with our partonic interpretation of instantons

since the dimension of the moduli space of a single instanton is 4C2(G), implying the

existence of C2(G) partons in general. The presence of |G| in the anomaly coefficient is

perhaps hinting that each of these partons transforms in the adjoint of the gauge group G.

In the case of sigma-model solitons, we have seen above that a detailed study allows

us to reconstruct properties of the high-energy theory. Can we do something similar for

Yang-Mills instantons? We hope to return to this question in future work. Here we limit

ourselves to a few simple observations and speculations. Firstly, the instanton solution

has only magnetic components of the five-dimensional gauge field turned on. Yet, in five

dimensions, magnetic charge is naturally carried by string-like objects. So perhaps each

parton is itself a loop of string. Indeed, the caloron picture [24, 25] reveals N strings inside

the instanton but, as we described in section 2, in the case of sigma-model lumps calorons

were not directly related to partons. Strings were also found lurking inside instantons

in [37, 38] in the context of dyonic instantons [39].

In the context of the sigma-model, the force between a lump and anti-lump spectac-

ularly revealed the partonic quantum numbers for CP1, but proved more myopic in the

case of CPN−1. For Yang-Mills instantons, the force was computed in [40]. An instan-

ton of size ρ and an anti-instanton of size ρ̄, separated by a distance r ≫ ρ, ρ̄ feel the

attractive potential

V = −
32π2

g2

ρ2ρ̄2

r4
Cab η̄a

µνηb
µλr̂ν r̂λ

– 22 –
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The fact that the force is quadratic in ρ, rather than linear, is again indicative of loop-like

objects as befits a magnetic dipole. Here Cab describes the relative orientation of the two

instantons within the gauge group. Aligned instantons, with Cab = δab feel the maximum

force. However, in contrast to the situation with sigma-model lumps, instantons can hide

from each. If they sit in commuting SU(2) factors in the gauge group, the instanton and

anti-instanton feel no force. (A similar phenomenon is not allowed in the case of the sigma-

model because both lump and anti-lump solutions are required to asymptote to the same

vacuum). Needless to say, it would be very interesting to interpret the instanton force

formula in terms of partons.

Finally, perhaps the most important question is to determine the confinement mecha-

nism that binds the partons inside the instanton yet allows them to move freely. In the case

of the sigma-model lump this arose due to the log-divergent energy arising from the long-

range fields of the parton. However, as discussed above, this divergence reveals itself in the

moduli space metric for lumps. There is no hint of such a divergence in the moduli space

metric for instantons, suggesting that the confinement mechanism is something different in

this case. In particular, this means that the merons discussed in [40] are not the partons

of interest: as well as having topological charge 1/2 instead of 1/N , they have Fµν ∼ 1/r2

giving rise to a log-divergent energy. It appears that the confinement mechanism at play

inside Yang-Mills instantons is somewhat more subtle. Perhaps the deconstruction of the

(2, 0) theories presented in [41, 42] can shed light on this issue.
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